Traditional inquiries seek to eliminate a paradox by narrowing the definition of an issue, re-stating the problem, or hoping it will go away
Over time, major social change spurred by technological change has led to unprecedented flows of people, information and resources impacting on global ecological systems. Unfortunately for all of us, these flows have produced a new class of socio-environmental problem that challenges the very existence of the society that produced it.
Wicked problems that have arisen from the impacts of social-environmental change include community responses to environmental disaster and the clash between the social and biophysical sciences. In each of these examples, the source of the problem is also the basis for its resolution -- an underlying paradox.
Unfortunately, traditional inquiries seek to eliminate a paradox by narrowing the definition of an issue, re-stating the problem, or hoping it will go away. Conversely, in an open critical inquiry, paradoxes provide a valued diagnostic for points at which current thinking is frozen. Whereas in traditional research, a paradox is treated as a pair of opposites, in an open inquiry, the pairs of opposites are treated as complementary, and provide a useful indicator of the heart of the issue.
The three foundational elements of an open critical enquiry are:
• multiple ethical positions;
• multiple world views; and
• multiple ways of constructing knowledge.
In the traditional mode of inquiry, the problem would be approached by selecting one world view and one construction of knowledge, and expecting the two to be logically consistent. For example, a socio-environmental issue would be divided into issues of society and environment; the ethical perspective would not usually be examined. In an open inquiry, a way must be found for all to be included -- even if in practice, the three foundational elements are contradictory. For example, agreeing on the existence of climate change as a reality does not necessarily lead to a shared concern for the next generation, or to equal acceptance of the sources of information that led to the projection.
Shifting to an open critical inquiry entails a different construction of the task:
• No longer is the inquiry regarded as the sole responsibility of one specialist discipline or profession; rather, it seeks evidence from all affected parties;
• The findings of the inquiry are not expected to be final, certain or complete;
• Rather than being treated as an error to be eliminated, any paradox that arises is welcomed as offering a potential solution; and
• Participants in such an inquiry include both researchers and the researched, since both groups are part of the problem and of its potential resolution.
Following are four steps for conducting an open critical inquiry.
STEP 1: Identify the range of world views that make up the context of the problem. When dealing with wicked problems, the world view of the interested parties might be of the planet as an inexhaustible source of resources, or as divided between Western wealth and Southern poverty, or as a set of technical or a set of social issues. They may have assumed that the state of the world will always be in a state of flux, and that our understanding of either the social or the physical environment will always be provisional and partial. On the other hand, the participants may consider that the research outcome should be certain and generalizable to other wicked problems. It is up to the transdisciplinary practitioner to make these positions transparent to each participant.
STEP 2: Select the knowledge traditions most likely to contribute to the review of a particular wicked problem, without being limited by any particular disciplinary perspective or the current conventional wisdom on the issue. In accepting the equivalence of the knowledge from all contributing parties, an open transdisciplinary inquiry recognizes the validity of each construction of knowledge and its particular tests for truth. For example, if the context of a wicked problem is ‘the pursuit of an industrially-developed world’, the constituent epistemologies would be those of the differentially-developed North and South. If the context is ‘the current distribution of planetary resources’, the key knowledges would be social, economic and ecological management.
STEP 3: Establish that there is a group of knowledge cultures that make up the suite of interests in social-environmental decision-making. Within each of the five ‘knowledge cultures’ described below, there are criteria for testing the validity of the evidence that that knowledge culture is prepared to accept. The transdisciplinary inquirer must therefore be familiar with those criteria or they run the risk of testing one knowledge culture’s contribution against another’s set of criteria; for instance, judging a holistic contribution by statistics, or a community contribution by the objectives of the lead industry of the area.
i.Individual knowledge
Each individual mind is, by any definition, the primary site of the construction of knowledge, albeit mediated by the society in which it is developed . Michael Polanyi identifies the difference between individuals' explicit and tacit knowledges. That is, what you know you know, and what you continually draw on without knowing that you know. Added to this is the important difference between 'knowing that you don't know', and 'not knowing that you don't know'. In classical Science, these finer points are excluded from an inquiry. Only the individuals' rational and externally-validated observations are considered to contribute to knowledge. Yet an individual’s reflection on their experiences is crucial to any understanding of the dynamics of change.
ii.Community Knowledge
A community's knowledge is constructed through shared events, significant symbols, and above all, a shared local language. Anthropologist Clifford Geertz describes the knowledge of a local community as gained through “citizens not just using their eyes and ears, but using them collectively, judiciously and reflectively to understand their own locality”. Each community is different from all others, but linked to others in a network in their local region, across the nation and around the planet.
iii.Specialized Knowledge
Each specialization – Medicine, Law, Ecology, Engineering, etc. -- forms a distinct community of practice, with its own research models and paradigms. The rigour and validity of a specialized inquiry rests on well-defined questions, critical doubt, empirical observations, and capacity to generalize the findings. The result will often be delivered in a specialized language that increases accuracy but reduces access to the findings by other forms of knowledge. With no built-in connection between the disciplinary paradigms, specialized knowledge can be represented as a disconnected ring of boxes.
This poses challenges for open transdisciplinary inquiry, which aims to be both synoptic and synergistic. A synoptic inquiry seeks to understand a whole through the insights of each of the component parts. Examples are the synoptic weather chart and multi-disciplinary inquiries. A synergistic inquiry seeks to establish a relationship between the parts capable of producing a fresh whole, one that none of the parts could have achieved alone. Examples are the four chambers of the human heart that beat as one; and an open transdisciplinary inquiry that resolves a wicked problem.
iv.Organizational Knowledge
Generally speaking, government, industry and the major non-government agencies have adopted a ‘managerial approach’, and as a result, all forms of organization tend to function under a similar framework of strategic decision-making that includes planning, designing, applying and reviewing. The language used refers to results, cost/benefits, objectives, timelines, inputs and outcomes, depending on the knowledge culture.
v.Holistic Knowledge
Holistic knowledge is universally described as ‘an understanding of the whole’. One school of thought seeks to document the parts of the whole as units in a hard (technical) or a soft (social) system. The findings of such an inquiry are represented as a grid, a hierarchy of detailed lists, or a flow chart. The second interpretation of holistic, and the one I prefer, is to seek to understand the whole through grasping its essence or core. For example, holistic thinking has contributed to our understanding of Ecology through the creative coining of concepts such as biodiversity and ecological niche. The validity of the findings of a holistically-oriented inquiry rests on the extent to which it evokes a shared meaning among the participants and consumers of the research.
STEP 4: Establish a Collective Learning Cycle
The aim is to bring the participants in the wicked problem together so as to create a greater understanding of the whole while respecting the perspectives of the contributing knowledges. A methodology is needed that can respect the contributions of each individual knowledge culture, while at the same time provide a body of expertise that brings them together synergistically. I believe that such a methodology can be found in Weatherhead School of Management Professor David Kolb’s Experiential Learning Model, which entails four steps: reflecting on principles; making concrete observations; generating new ideas; and testing the ideas in practice. Over several decades, Kolb and his colleagues have confirmed the reliability of this cycle for adult learning in general. Building on Kolb’s model, I have developed a ‘Social Learning Spiral’ that consists of four questions, to be asked in sequence:
1.What should be? Reflecting on principles, generating ideals.
2.What is? Conducting concrete observations, generating facts.
3.What could be? Thinking creatively, generating new ideas.
4.What can be? Testing the ideas, generating effective practice.
The extent to which this process differs from the usual decision-making process cannot be over-estimated: at each stage, the process of collective knowledge construction differs radically from the usual pursuit of one ‘right’ answer. Following are my suggestions for proceeding through the four questions.
1. WHAT SHOULD BE? Develop Principles. The first step involves bringing together the multiple world views of the different knowledge cultures of the participants, ideally drawn from all the cultures involved. Their world views will be reflected in each of the participants' ideals for the outcome of resolving the wicked problem. Each participant's ideals stand alone and are respected for their own sake.
2. WHAT IS? Describe Parameters. The second step asks for the same group to identify the parameters that support and inhibit the attainment of their ideals. All parameters are treated as legitimate, as in Step 1. This supplies the 'facts' that define the inquiry and reflects each of the contributing knowledge cultures.
3: WHAT COULD BE? Design for Potential. The third step calls for the use of the imagination, as the process moves from the synoptic to the synergistic. Optimum conditions for creativity such as trust, security and challenge are required to develop shared creativity. Innovative, business not-as-usual ideas are sought, remembering that this issue is a wicked problem whose resolution will fall outside of the mainstream society that generated it.
4. WHAT CAN BE? Doing the Design. The fourth step is again a synergistic process. The energy generated in the design process is maintained in forming practical collaborations to put the ideas into action. Appreciative and illuminative evaluation methods monitor the plans, steps and outcomes of the collaborative action plans.
In closing
The collective learning process described in Step 4 applies each of the foundational principles of an open critical inquiry: the shared ethic is made clear in the focus question; different worldviews are respected and shared in stage one; multiple knowledges are reflected in the parameters of the wicked problem that the decision-making interests declare in stage two; the creative use of the imagination in stage three generates the creativity required for innovative solutions; and finally, the innovative solutions are put to the test by taking and reviewing action.
A note of caution: having completed an open enquiry, you are not finished. Remember, wicked problems have no ‘stopping rule’. The last stage of the cycle only serves to secure the collective learning to date and provides a launching pad for the next learning cycle.
Dr. Valerie Brown, AO is director of the Local Sustainability Project at the Fenner School of Environment and Society, Australian National University. She is also an Adjunct Professor at the Institute for Sustainable Futures, University of Technology Sydney and Emeritus Professor, University of Western Sydney. She is the co-editor of Tackling Wicked Problems Through Transdisciplinary Imagination (Earthscan, 2010), from which this was excerpted.
[This article has been reprinted, with permission, from Rotman Management, the magazine of the University of Toronto's Rotman School of Management]