Incorporating quantum-inspired optimisation algorithms with design optimisation will be the key to tackling the Battery Thermal Management System (BTMS) issue for electrical vehicles to create immense value for the global electric mobility movement
This year’s Nobel Prize in Physics has been awarded to Alain Aspect, John Clauser, and Anton Zeilinger for their groundbreaking quantum physics experiments.
Many real-life problems like the modelling of the brain, simulation of propagation of cancer in the human system, drug discovery for combating drug-resistant bacteria, understanding the impact of our decisions on carbon footprint and global warming, forecasting weather and natural calamities, reducing the cycle time of designing complex systems like electric vehicles, aircraft and simulating their performance before physical manufacturing, can be better solved by using quantum-inspired algorithms running on quantum computers. Classical computers (working on bits-zeros and ones) impose massive constraints on complex modelling phenomena, and the run time of accurate algorithms is very long. In this article, we discuss how the quantum-inspired algorithm can solve a complex problem of Battery Thermal Management Systems in electric vehicles, which has caused several accidents in the recent period.
In the current geopolitical climate, it is hard to deny that electric vehicles (EVs) are the trailblazers in the transportation industry’s transition from fossil fuels to renewable energy sources. Countries worldwide have pledged to become carbon neutral—with EVs playing a massive role in the key strategies for reducing greenhouse gas emissions and decreasing the dependency on fossil fuels. The United Nations Framework Convention on Climate Change has laid down the guidelines for the contribution required by each of its member countries to reduce Greenhouse emissions. For India, EVs must gain a 30 percent market share by 2030. The push towards the EV transition is significant as transportation accounts for 10 percent of all emissions. However, the dependability of electric vehicles is subpar, as evidenced by the numerous batteries-related accidents. To overcome this issue, adaptation to cutting-edge computing technologies like quantum computing can guarantee increased reliability and safety while maintaining cost-effectiveness.
The adoption of EVs is integral for India to reduce its carbon footprint and meet its goal of becoming a net-zero nation by 2070. The Indian government is investing Rs 9000 crores ($1 billion) through 2024 as part of the Faster Adoption and Manufacturing of (Hybrid &) Electric Vehicles (FAME) II program to mitigate the consequences of global warming, with the daring goal of creating a net-zero economy. But even with all the prestige and glory EV possess, they still have a fundamental issue. EVs are highly susceptible to catching fire and even occasionally exploding, as demonstrated by incidents across India this summer. These dangerous incidents are not just limited to India, as there is evidence of such cases occurring worldwide. Due to defective battery systems, five major automotive manufacturers have recalled their vehicles supplied with LG batteries. The battery’s thermal runaway difficulties are the primary cause of such problems. This conflict is influenced by several variables, including external battery damage, poor charging, weather, and improper cooling.
Fire incidents in electric vehicles in India occurred due to multiple reasons. If the electric vehicle detects an overheating issue, it should ideally stop powering the batteries. Furthermore, many of these vehicles lacked any venting mechanisms to keep the entire car from engulfing in flames. These issues highlight some of the biggest problems that EVs are now encountering. The main question is, how do we design battery packs properly to stop batteries from overheating and isolate the problem to inflict the least amount of damage?
[This article has been reproduced with permission from the Indian School of Business, India]